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Abstract

Previous theoretical work on the boundary layer receptivity problem has utilized

large Reynolds number asymptotic theories, thus being limited to a narrow part of

the frequency - Reynolds number domain. We present an alternative approach for

the prediction of localized instability generation which has a general applicability,

and also accounts for finite Reynolds number effects. This approach is illustrated

for the case of Tolhnien-Schlichting wave generation in a Blasius boundary layer due

to the interaction of a free-stream acoustic wave with a region of short-scale varia-

tion in the surface boundary condition. The specific types of wall inhomogeneities

examined are: regions of short scale ,,,nriations in wall suction, wall admittance and

wall geometry (roughness). Extensive comparison is made between the results of the

finite Reynolds number approach and previous asymptotic predictions. Tiffs com-

parison also suggests an alternative way of utilizing the latter at Reynolds numbers

of interest in practice.

1. INTRODUCTION

Laminar-turbulent transition is a result of instability of the hmfinar state. At high

Reynolds numbers, suitable pertm'bations t(, this state are amplified, eventually

leading to the stable (in-the-large) turbulent state. It is important to note that the

introduction of these "suitable" perturbations (i.e., instabilities) into the boundary

layer flow is a necessary prerequisite for transition to occur. The process by which

the boundary layer internalizes the external disturbances in the form of instability

waves is known as the boundary layer receptivity. Once generated, these instabil-

ity waves undergo linear amplification and nonlinear interactions before the flow

becomes fully turbulent.

Therefore, receptivity signifies the genesis of boundary layer tr,nnsition. Goldstein [1,21,

Ruban [31 and Goldstein et al [41 utilized high Reynold_ munber asymptotic methods
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to elucidate the basic mechanisms responsil,le for making the; boundary layer "recep-

tive" to external disturbances. This pioneering work provided much of the impetus

for further work in receptivity during the past few years. In the remainder of this

section, we first briefly describe the general features of Goldstein's receptivity the-

ory. Following this, we summarize the receptivity research that followed Goldstein's

work, and present the problem addressed in this paper.

The classical linear stability theory is based upon the disparity between the stream-

wise length-scales of the instability motion and the mean boundary layer. The

instability waves correspond to the short-scale, nearly periodic eigensolutions of the

slowly developing boundary layer which have a small growth rate for parameter val-

ues between the neutral boundaries. The obvious implication of the locally periodic

nature of the instability wave is that the wave is decoupled from any other spatially

periodic motion with a different wavelength.

It is obvious that in order to generate an instability wave of a particular frequency,

one would require a forcing which has not only the same frequency, but also a

spatial scale that matches the instability wavelength. However, free-stream distur-

bances are governed by the inviscid dynamics outside the boundary layer, while the

instability waTces represent fi'ee oscillations (or eigenmodes) of the flow within the

boundary laser. Hence, the wavelengths of tllese two types of disturbances are, in

general, quite different. In fact, in low-speed flows, the fi-ee-stream disturbances

(which can either be acoustic waves or convected vorticity disturbances, i.e., free-

stream turbulence) have wavelengths which are much longer than the instability

wavelengths. The free-stream unsteadiness can then be "tuned" to the instabil-

ity length-scale only through an interaction with the spatial si_ectrum of the mean

boundary layer.

Since a slowly developing (or "quasi-parallel") mean boundary layer does not have

the short length-scales required for the tuning process, receptivity will 11sually oc-

cur only in regions of non-parallel mean flow. Goldstein showed that there are

two classes of regions where the mean flow becomes non-parallel. The first class of

non-parallel mean flow regions corresponds to the region close to the leading edge,

where the boundary layer thickness is changing rapidly. The second category, which

is much more diverse, involves regions farther downstream of the leading edge. Here

the mean-flow becomes non-parallel due to either a short-scale variation in the sur-

face boundary condition or an adverse pressure gradient provoking a separation of

the mean boundary layer. The short-scale variations in surface boundary condition

correspond to changes in surface geometry (wall roughness), wall suction/blowing

velocity or wall temperature. The latter two cases are especially relevant to laminar

flow control (LFC) where suction and heating (water) or cooling (air) are utilized

for stabilizing the boundary layer. The variations in boundary conditions can be

either local (isolated roughness elements, well-separated suction/heating strips) or



distributed over a largo number of instability wavelengths(distributed roughness,
surfacewaviness,closely spacedsuction/heating strips); however, the role of the
short-scalevariation is the samein both eases,viz., to provide the tuning required
for producing the appropriate forcing.

In comparing the two classesof receptivity regions, it is important to note that
instability wavesgeneratednear the leading edgeundergo an exponential deeay
upstream of the lowerbranch neutral stability point, evena weak receptivity mech-
anism closeto the neutral point is likely to bemore important than a muchstronger
receptivity mechanismnear the leading edgeIs]. In practice, tile exponential decay
betweenthe leadingedgeand the neutral stability point is decreasedsomewhatdue
to the presenceof an adversepressuregradient region close to the leading edge.
However,in this paper we concentrateon the secondclassof receptivity regions.

Goldstein[2]and Ruban[3]presentedanalytical solutionsfor the specificcaseof recep-
tivity due to the interaction of a free-streamacousticwavewith a small but sudden
variation in the surfacegeometry. Their analysiswas limited to two-dimensional
flows in terms of both the mean boundary layer as well as the instability wave
generated due to the interaction. However, the asymptotic framework of Gold-
stein and Ruban was later extendedby other investigators to a variety of other
problems in the secondclassof non-parallel mean flow regions. Bodonyi el a/{6]

considered the ease where the mean flow perturbation due to the wall hump is not

small enough to permit linearization with respect to the oncoming boundary layer.

Choudhari [51 analyzed receptivity mechanisms arising in LFC applications which

employ suction through a porous surface as a means of stabilizing the boundary

layer. He showed that in addition to the receptivity caused by mean flow gradients

due to variations in the wall suction distribution, the short-scale variation in the

admittance of the porous surface directly scatters energy from the acoustic wave to

the instability wave. The latter mechanism is operational even in the absence of a

mean flow adjustment. Choudhari and Kerschen [7] studied the three-dimensional

interaction of a free-stream acoustic wave with a wall inhomogeneity of above types

which has short-scale variations in both the streamwise and spanwise directions.

Kerschen Is] and Choudhari and Kerschen [9] investigated the generation of instabil-

ity waves near a wall hump due to a convected vorticity disturbance in the free

stream. Finally, localized generation of T-S waves in two and three-dimensional

supersonic boundary layers was analyzed by the present authors [1°] in the context

of two and three-dimensional supersonic boundary layers.

All previous investigations discussed above utilized the asymptotic (triple deck)

framework. Although useful in their own right, these predictions were based on

a single-term asymptotic expansion. However, the critical receptivity region cor-

responds to locations upstream of or dose to the lower branch of the neutral sta-

bility curve, i.e., Reynolds numbers smaller than those in the main part of the



unstable regime, where the quantitative accuracyof the asymptotic predictions is

questionable. In this paper, wc present an alternative approach for the prediction

of receptivity in localized regions which would yield relatively accurate results in

the Reynolds-number-range of interest in practice. For simplicity, attention is re-

stricted to the case of incompressible flows over two-dimensional airfoils. However,

the present approach also provides a viable framework for the prediction of localized

receptivity in such complex flows as compressible and ttlree-dimensional boundary

layers. In section 2, we formulate the problem for the local interaction of a free-

stream acoustic wave with an arbitrary wall inhomogeneity. It is shown that the

local receptivity problem reduces to an inhomogcneous Orr-Sommerfeld (henceforth

O-S) problem in the Fourier transform space, and the amplitude of the generated

instability wave can be determined as the residue of the pole corresponding to

that particular eigenvalue of the O-S problem which represents the wavenumber

of tile Tollmien-Schlichting (T-S) instability wave. In section 3, we present results

which show the variation of the receptivity coctTicient in the frequency parameter -

Reynolds number space. Detailed comparison of these results with the asymptotic

predictions is also presented in Section 3. Although the discussion in this paper

pertains only to localized inhomogeneitics, in section 4, we also point out the pos-

sible application of this analysis to distributed regions of sholt-scale variations. In

addition to accounting for the fiaite Reynolds number effects, the present approach

has other advantages over the asymptotic theory, and these are discussed in Section

5.

2. ANALYSIS

This section provides a summary of the finite Reynolds number approach. In order

to assess the finite Reynolds number effects on localized receptivity mechanisms

in the simplest possible setting, we focus attention (,n a two-dimensional, incom-

pressible flow past a semi-infinite, flat-plate airfoil. However, the present approach

can easily be applied to other types of geometries as well. The free-stream speed,

density and kinematic viscosity corresponding to the ,_ncoming flow are denoted by

U*, p* and v*, respectively. The unsteady free-stream disturbance is assumed to

be a plane, harmonic acoustic wave propagating parallel to the plate in the down-

stream direction. Since the acoustic wavelength is infinite in the zero Mach number

limit, the free-stream flow consists of a uniform flow with mean velocity U* plus

a harmonic perturbation of amplitude •u,,_*and frequency w*. The uniform velocity

fluctuation u*_ is also accompanied by a uniform, time harmonic pressure gradi-

ent with an amplitude ' * *_ Uac. We assume the nondimcnsional amplitude of the

free-stream fluctuation tobe sufficiently small (e D = u,,_/coo• _rr* << 1) so that the

unsteady nmtion can be treated as a small perturbation of the local mean flow.
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The receptivity is assumed to occur due to a localized wall inhomogeneity involving

a variation in one or more of tile surface boundary conditions. Some remarks

concerning the application of results fi)r the localized case to an extended region

of receptivity are presented in Section 4. We assume that the distribution of the

normal component of the steady or unsteady w_'locity at the wall, or the wall height

distribution has a short-scale variation with respect to the streamwise coordinate

in a local region which is a distance ['* from the leading edge (Figs. la-lc and Fig.

2). While the nonzero mean normal velocity represents the wall suction/blowing

distribution, the short-scale distribution of the unsteady normal velocity at tim

wall has been introduced in order to model the effects of rapidly varying surface

admittance in an incompressible flow.

The admittance of a surface is defined as the ratio, at the surface, of the unsteady

normal velocity to the fluctuating component of pressure. Since the absolute value

of the pressure becomes irrelevant in the incompressible limit, we specify the dis-

tribution of the unsteady normal velocity at the wall instead of directly imposing

a short-scale distribution of the wall adnfittance. Even in the compressible case

analyzed by Choudhari['q using asymptotic theory, the mathematical statement of

the inhomogeneous boundary condition reduces to the specification of the unsteady

normal velocity at the wall. Therefore, the present treatment of the wall admit-

tance variation poses little difficulty in the comparison of present results with the

asymptotic predictions. It is worth noting that in addition to modelling the wall ad-

mittance variation, the unsteady mass flux at the wall may also represent unsteady

disturbances within the suction system, especially the designs with large suction
slots.

The maximum ,amplitudes of the local variations in difft'rent types of wall bound-

ary conditions (as described above) are denoted by the nondimensional parameters

e_ ), where the index j varies from one to three depen(ling on the type of wall in-

homogeneity. Specifically, the parameter e-(t)u,corresponds to the normalized wall
(2)

suction/blowing velocity, "v'2/U_, whih, e,, denotes v,*,,/u_¢, the unsteady vertical

velocity at the porous surface normalized by the fi'ee-stream disturbance velocity.
_(2)

The parameter t,,, can be related to the amplitude of the wall-adn_ittance varia-

tion, /t_,,p*U'_, where fl,,*,,denotes the wall admittance as defined in the preceding
(3)

paragraph. Finally, e,, denotes tlm roughness height, H,_,/,5*, where 6* is the

displacement thickness of the Blasius boundary layer at the location of the wall

inhomogeneity (i.e., the mean flow in the absence of any localized variations). All
_(j)

three parameters _, , are assumed to be small enough to allow linear analyses of the

different mechanisms and superposition of the results. While the assumed orders

of magnitudes for the wall-suction and wall-admittance are consistent with typical

parameter values in LFC systems, the roughness heights can vary over a wide range

in practice. The assumption of small roughness height allows us to compare results



with the asymptotic predicti(ms of Goldstein |z].

Since the roughness dement and the variation in wall su(:tion are assumed to pro-

duce only a small perturbation to the Blasius boundary layer the stability proper-

ties of the pertm'bed mean flow (i.e., the mean flow in presence of the perturbation

clue to the w_dl suction or wall geometry variation) are identical to those of the

Blasius boundary layer, to the leading order. Wc assmne the Reynolds number

R6. = U_o6*/u*, based ut)on the local displacement thickness of the unperturbed

mean boundary layer, to be large enough such that the stability of the unperturbed

mean flow at the location of tile wall inhonmgen(_ity is governed by tile classical,

quasi-parallel Stability theory. Strictly speMdng, the lm'ge Reynolds number as-

sumption is inherent within the boundary layer approximation for the mean flow.

In practice, however, the quasi-parallel stability theory has been found to be rea-

sonable only for Reynolds numbers much larger than those at which the mean flow

is accurately described l)y the boundary layer theory. For the Blasius boundary

layer, this constraint (apl)roximately) corresponds to Reynolds numbers larger than

the minimum critical Reynolds numl)er of 520.

We further assume that the length-scale of the local variations, L*, is of the same

order as the local T-S wavelength. This provides the necessary ingredient for the

wavelength reduction fl'om the free-stream disturbance to the instability wave. In

this paper we restrict at.tcntion to a localized rrgi()n of receptivity. However, remarks

concerning the extension of these results t_ (listril)ut(,d regic)ns of receptivity will

also be presented in Section 4.

Since the instability wavelength is much shorter than the length-scale of the mean

boundary layer (i.e., et = L*/tO* << 1), we can utilize the method of matched

asymptotic expansions to simplify the problem. Thus, we match a local approxima-

tion valid in the region of receptivity to an outer (or "global") solution valid farther

downstream. The governing equations in the outer region are homogeneous; hence

the far (townstreana solution for the short-scale, unsteady motion produced by the

interaction of the free-stream disturl)ance with the wall inhomogeneity corresponds

to a superposition of the discrete and c()ntinuous si)ectrunl type eigr_nmodes in a

slowly developing boundary lay('r. The aml)litudes of thrse eigensolutions are de-

termined by a matching with the solution in the region ()f receptivity which is the

focus of this paper.

We introduc," a Cartesian coordinate system {x*, y*} centered at an arbitrary point

within this 1,)calized region (Fig. 2). Since we are considering the two-dimensional

case, it seems appropriate to simplify the fornlulation l)y having the streamfunction

as the only dependent wtriable. The streamflmction _t/, is normalized by U* g*

and we define the local coordinates in the streamwise and transverse directions as

X = x*/_* and Y = y*/_*, respectively. Although for very large Reynolds numbers,
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tile instability wavelength L* is of the order of several displacement thicknesses,

the choice of 6" as the local length-scale is motivated by convenience. The slow

streamwise coordinate representing the growth of the Blasius boundary layer is

defined as x = x*/('*. The nondimensional time t and frequency w are assumed to

have been normalized by 6*/U* and its inverse, respectively.

The strcamfunction within the local region, '_/,(J), satisfies the two-dimensional

Navier-Stokes equation,

0V2¢(J } 0_ (j) 0V2_, (j} 0_, {j} 0'_ {j} 1
+

Ot OY OX 01 '_ OX R_.
V4_i, (1) = 0 , (2.1)

where j=l corresponds to the case of receptivity due to wall suction variation,

j=2 to the wall admittance problem while j=3 corresponds to the wall hump case.

Streamfunctions 'g,(J) and ¢(_-) satisfy the inhomogeneous wall boundary conditions

= (2.2.)
OX

and

0¢'(2)(X'0) - el_e(£2}F(2)(X) e -_'' (2.2b)
OX

corresponding to specified distributions of the mean and unsteady components,

respectively, of the normal velocity at the wall. In addition, _,(1) and _b{2} must

satisfy the no-slip boundary condition

O_b(J)(X'O) = 0, j = 1,2. (2.2c, d)
0Y

On the other hand, _,(a) satisfies the impermeability as well as the no-slip boundary

condition at the deformed surface location,

_,(a) _ = 0 at Yw = e_,a,)F(a}(X) • (2.3a, b)
0Y

The functions F(J)(X) (j = 1 - 3) denoting the normalized spatial distributions

of the wall inhomogeneities are assumed to bc arbitrary throughout the analysis.

Finally, we require that all flow quantities approach th.' respective free-stream values

far away fi'om the wall. This implies

¢{J) ---, (1 + e/se -i't) Y as Y --_ oo (2.4)

One may observe that four small paranwters appear in the problems defined by

equations (2.1)-(2.4), namely, R-_ol,et, eD and ei_ _. If one is interested in only a



narrow range of the frequencyparameterw, say in vicinity of one of the two neu-

tral branches, then the two parameters R_-. I and el are related to each other for

sufficiently large values of the Reynolds number. Simila,'ly, there are restrictions

on the wall inhomogeneity amplitudes e_ ") in terms of Reynolds number scaling in

order that the disturbance produced due to the wall inhomogeneity is a linear per-

turbation of the base flow. However, in the interest of having a general approach

for localized receptivity problems, we treat these parameters as independent of each

other. It will be seen fl'om the following analysis that treating these parameters as

independent does not affect the amplitude of the generated instability wave.

Hence, we expand the streamflmction within the local region as

AJ)m(Jlr,e y)V,°) = ,I,o(.,Y) + +

eJ'aCw //"1 I.x,l ,,It: + ' w ' '

where the upper and lower case variables correspond to the steady and unsteady

terms, respectively. The subscript 0 denotes the base flow quantities, i.e., flow within

the local region in the absence of any short-scale variation, while the subscript 1

represents the short-scale perturbations to this base flow due to the local wall in-

homogeneity. Thus, q0(x,Y) corresponds to the Blasius streamfimction, while

the term involving '*/'0(x, Y) represents the forced signature of the unsteady free-

stream disturbance within the Blasius boundary layer. The quantities q(ll)(X, Y)

and kO(la)(X, Y) correspond to the short-scale mean flow perturbations due to local

variations in the wall-suction and wall-h_,ight (listributi(ms, respectively. Similarly,
,(J) .the term involving _/1 (X, Y) represents the short-scale corrections to the unsteady

signature _/'0(-_,Y) due to the local inhomog,,neity. Specifically, _b}1) and _b_a) de-

note the leading order corrections due to interacti,m of the basic unsteady solution,

_'0, with the short-scale mean-flow perturbations corresponding to _(/) and _a),

respectively. On the other hand, the motion corresponding to z/,{2) is induced di-

rectly due to the short-scale variation in the unsteady wall-flux. Thus, in each case,

_'1 denotes the leading order solution fin' the short-scale, unsteady motion which

contains both temporal as well as spatial scales matching those of the instability

wave.

The unsteady perturbation ¢0 to the Blasius boundary layer due to a small ampli-

tude, time harnmnic I)erturbation to the unifi)rm fl'ee-stream was investigated by

Lighthill[111, and later by Ackerberg and Phillips [lzl and Goldstein[q. Ackerberg and

Phillips analyzed the unsteady motion in the "leading edge region" corresponding

to distances of the order of a convective wavelength downstream of the leading edge,

, )1I i.e..ra - c0*(e* + a'*)/U* = O(1). They showed that for e' - ( w.-_-z << 1,



the unsteady motion in this region is governedby tile linearized unsteady bound-
ary layer equations. Becauseof the parabolic nature of these equations, the far
downstream limit (.r_ >> 1) of ¢0 correspondsto a particular solution g'01,which
exhibits a two layer structure in the transversedirection. Ackerberg and Phillips
developeda compositeexpansionfi)r ¢01,which is valid to O(.rl )-3/2 in both these

layers.

_/'o_ = uop dY, (2.6a)

where

•uo_ = 1 -e i3/:" - _.l--:_---'lIF_l(ll)

I

/_ I 3Y I

iF_t(O)d _/_c' 3 3 a2 i 1

- +

Here a and 71denote the Stokes layer coordinate _ Y, and the Blasius variable

(_* Rv'-R_.ee,/C*) Y, respectively. Thus, to tlm leading order, _/'0p is independent of

the streamwise coordinate as well as the mean flow, being identical to the Stokes

shear wave solution for a purely oscillating flow over an infinite fiat plate. Ackerberg

and Phillips solved the linearized unsteady bomtdary layer equations numerically to

demonstrate that the unsteady solution approaches the far downstream behaviour

through damped oscillations corresponding to the eigensolutions of the linearized

unsteady boundary layer equations first found by Lain and Rott [131.

Gohlstein [l] analyzed the unsteady motion in the region farther downstream (xl =

O(e'-2)), where the unsteady motion satisfies the. Orr-Solnmerfeld equation with

slowly varying coefficients. This is also the region of interest in this paper since we

assumed the wall inhomogeneity to be located in a region where the quasi-parallel

stability theory is wdid. Goldstein showed that the particular solution (2.6a) is also

valid in the Orr-Sommerfeld region. However, the Lain and Rott eigensolutions now

match onto the discrete spectrum of the Orr-Sommerfeld equation, the first mode

from which corresponds to the Tolhnien-Schlichting (T-S) instability wave. This

is precisely how an instability wave is generated by the leading edge receptivity

mechanism alluded to in the introduction. U1)stream of the location correponding

to the lower branch neutral stability point, where the instability wave decays expo-

nentially, the principal contribution to _/'o is still provided by the particular solution

(2.6a). In contrast, if the wall inhomogeneity is located far downstream of the lower

branch, the contril)ution from the instability wavc generated close to the leading

edge may become comparable to that fl'om _'01,. Since we are interested in the gen-

eration of the instability wavc and not its scattering due to a wall inhomogeneity,

we ignore any contribution to ¢0(x, 1") from eigensolutions generated upstream of

the wall inhomogeneity.
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Noting that the base flow quantities _IJ0and ¢0p depend only upon tile global
coordinate x in the streamwise direction, we can expand them both as Taylor series

in x about the origin to obtain

¢0(x, Y) = ¢°03 + ,i,o,(r) x + o(,d-), (2.7a)

and

¢0p(.,.,r) = G/r) + G_(Y) x--0(_), (2.7_)

where subscript x represents the partial derivative with respect to x and the su-

perscript ^ denotes the profile of a function at the oligin. Since x = O(el) within

the locM region, Eqs. (2.7a,b) imply that the stremnwise variations of qo(x,Y)

and ¢0(x, Y) in the local region can be neglected to O(et). Thus, both the steady

and unsteady base flow solutions within the local region correspond to a parallel

shear flow given by their respective profiles at the origin. This leads to a consider-

able simplification in the solution procedure for the steady and unsteady short-scale

perturbations q_J} and @_J), j = 1 - 3. The coefficient functions in the governing

equations for these local perturbations arc now independent of any streamwise coor-

dinate, thus allowing these equations to be reduced to ordinary differential equations

after taking a Fourier transform. The rest of this section essentially considers the

solution for the short-scale perturbations qlJ)(.¥, Y) and t!,rlJ)(x, Y).

First consider the mean flow perturbations, q11)(_¥, Y) and q2(la)(.¥, Y), due to the

local variations in waU suction velocity and wall height, respectively. Note that

the wall admittance variation is manifested only through the unsteady boundary

condition (2.2b). Therefore, to the leading order, there is no perturbation to the

mean flow for the j = 2 case, and q(j2)(X, Y) = 0. Substituting the perturbation

expansion (2.5) into (2.1)-(2.4), collecting terms of O(e_)), and transforming the

resultant equation using the foUowing definition for the Fourier transform,

O_

1 f e-i¢'Xg(X)dX (2.8)'_("1- V_
--OO

one finds that q_l)(y) and _-ifl13)(Y) satis 6, the time independent form of the Orr-

Somnmrfeld (O-S) equation in the wavenumber space

d2 • &ms. 1 d 2 2
io,¢_o(dy--_-ff-o_2)¢,-m,r ° _,,- _( r, 2) 'I', =0 (2.9)R_ dY'-'

subject to the inhomogeneous set of wall boundary conditions

_c,')(o)= -_(')(oO/i,_., ¢,_1)'(0)= 0, (2.10a, b)
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and

q/,:_)({)) = 0, qfl,:')'(0)- -_i,_'(()) F(:_){a), (2.11a, b)

where tile primes denote derivatives with respect to t" and tile boundary condition
(1) andfor _(13) has been shifted to Y = 0 using a Taylor expansion in Y. Both 't, 1

_3) satisfy homogeneous boundary conditions far aw ty from the wall,

= = o, j = 1,3, asY oo. (2.12.,b)

Although the term involving d"_J)/dI "' in (2.9) i_ nominally O(R_-.1), it has

been retained in order to satisfy the no-slip boundary condition at the wall. This

reflects the singular nature of the problem. Equation (2.9) contains additional

terms which are uniformly O(R-_. 1 ) and, therefore, cannot be justified on a ratio-

nM basis. A strictly rational perturbation scheme for the short-scale perturbations

• _J), j = 1, 3 corresponds to the well-known triple deck theory. However, it involves

different expansions in three separate regions in the direction nornml to the wall

(Stewartson[_4]). In contrast, Eq. (2.9) describes the motion in the entire local re-

gion and also accounts for the finite Reynolds number effects more accurately than

just a single term triple deck expansion.

The time independent Orr-Sommerfeld equation along with boundary conditions

(2.11a,b) and (2.12a,b) also describes the perturbation to a parallel shear flow over

an infinite flat plate due to small mnplitude, sinusoidM variations in wall height. Ap-

proximate, analytical solutions to this problem were fi_st obtained by BenjaminDS].

He also treated the case of a flow over an isolated bump as a superposition of

the wavy wall solutions. Subsequently, Lessen and Gangwani D6] and Aldoss and

ReshotkoD 71 integrated the Orr-Sommerfeld equation numerically to calculate the

stationary wavy-wall solutions. We also find the solutions for _(_) and _a) numer-

ically by using a spectral collocation scheme on a staggered grid which has been

described in detail by Macaraeg et a/DS]. Note that the total mean flow perturbation

can be obtained by computing the solution for all Fom'ier wavenumbers and then

inverting the Fourier transform. However, the focus of this work is to determine the

amplitude of the generated instability wave. It will be seen that with this limited

objective, it is sufficient to solve (2.9)-(2.12) for a singl,' Fourier mode corresponding

to the (complex) wavenumber of the instability wave in the locM region.

Having obtained th(. short-scale mean flow perturbati,,n, we now analyze the short-

scale correction, _/,((), to the unsteady i)ase flow solution. Substituting the pertur-
(J)

bation expansion (2.5) into (2.1), collecting terms ot" O(e,, e/_), and introducing

the Fourier transform (2.8) lett(ls to the O-S ('quatiol_ with a source term which is

nonzero for j = 1 and j = 3

• d2 _2),(;_iJ) • -;,,,_(i)
dY e
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_,_j)- _, ,1_ (_ ;,,,i,o),1 el" a2 ) -in{ o2)_ (2.13).... _' Up 1 /• = _;%,( dy_R_. ( ,IY 2

As seen from (2.13), the f_wcing term on the right han, l side arises due to the inter-

action of tile short-scale mean flow perturlmtion with the unsteady base flow term

_/_0. Since the wall admittance vm'iation does not cause any mean flow perturbation,

the source term is identically zero fi)r tlw j = 2 case.

Utilizing the perturbation expansion (2.5) along with (2.2)_(2.3), one finds that _1)

satisfies the homogeneous boundary conditions at the wall

¢,}')(o)= _}')'(o) = o. (2.14a, b)

Although _2) satisfies a homogeneous governing equation, it has to satisfy the in-

homogeneous boundary condition corresponding to the mlsteady mass-flux through

the porous surface

,}_=')(o)= P(:)(_,)/i_, (2.15_)

in addition to the no-slip boundary condition

,_,(f)'(0)= 0. (2.15_)

On the other hand, shifting the boundary conditions fin" d,_3) to Y = 0 leads to

_,_3)(0)= 0, ,d,l')'(0)= -_;'(0) F<')(_.), (2.16a, b)

thus implying that _}3) satisfies an inhomogcneous boundary condition as well as

the inhomogeneous differential equation. The inhomogeneous boundary condition

(2.16b) can be viewed as arising due to tlw adjustment of the base unsteady solution

_/'o to the locally deform(,d wall geometry. Finally, the streanffunctions _5_j), j =

1 - 3 satisfy the homogeneous boundary conditions far away flom the wall,

¢(j) =¢[i>, = 0 ,j = 1 - 3, as Y --* oc (2.17a, b)

Thus, as pointed out by Reshotko [191, th(' receptivity l)rol)lenl in each case reduces

to an inhomogcneous boundary value problem whet, the inhomogeneity is char-

acteristic of the particular receptivity mechanism. (riminale [2°1 and Tam [_1] also

developed receptivity theories based on the O-S equ; tion subject to forcing; how-

ever, this forcing amounted simply to an inhomogen.,ous boundary condition cor-

responding to the free-stream disturbance under consideration and did not involve

any short-scale structure, a necessary ingredient for receptivity as discussed in the

introduction. On the other hand, the present finite Reynolds number approach is

similar in spirit to the large Reynolds number asymptotic approach of Goldstein [21
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and Ruban[a]. One may, in fact, view the present approachas recasting Goldstein
and Ruban's triple-deck fi_rmulation in terms of the more familiar Orr-Sommerfeld
fl'amework.

The solution for ¢{1) in the physical spaceis given by the inverseFourier integral

OO

¢_J)(x,I') - 1 / ci,, x t,!;i/) (2.18)
--OG

where the intcgration path in the comph_x k plane is chosen to satisfy the causality

requirements, i.e., such that the time ha,'monic solution under consideration here

corresponds to the time-asymptotic limit of the corresponding initial value problem.

Since we are only interested in the generated instability wave which propagates

downstream (i.e., X > 0), the integ,'ation contour can be closed in the upper half

c_ phme. Applying the Cauchy's integral theorem shows that the inverse Fourier

integral corresponds to a sum of contributions f,'om the various singularities of the

integrand in (2.18). These include the pole contributions fl'om the discrete spectrum

and branch cut contrilmtions froin the continuous spectrum of the Orr-Sommerfeld

operator. The unsteady motion associated with the generated T-S wave is then

given by the residue contribution corresponding to the pole at the T-S wavenumber

a T-S, the location of which is determined numerically by solving the O-S eigenvalue

problem. The residue contribution is related to the Fourier transform solution _J)

by

i ci,_r_sX (2.19)._/,o) :.VY) ....
1 T-S_" _

0o I°t' ---_ tq'T-S

We evahmted the right hand side of (2.19) by solving ,he inhomogeneous O-S prob-

leln using the spectral collocation scheme of Macaraeg et al [lsl, and computing the

0 ,_(/)-1
derivative in the spectral space, o, via a central difference approximation.

(J)* the str,,amwise velocity flu(tu-In experiments, it is customary to measure uT_s,

ation associated with the T-S wave. Therefore, using (2.19) and noting that the

inhomogeneous terms in (.2.13)-(2.17) are linear in F(i)(a), one can express u_)__s

in the following form

U (j)* [X . C_ :i) * E,(Y; ,.,,Re*) e i('-'r-sx-'t)r-s, = , (2.20a)

where

C_ j) : e(J)F(J)'(l _A(J):w,,, t T-s'). u _ , R6* ), (2.20b)

and Eq(Y; w, R6. ) denotes the instability wave eigenfunction for the physical quan-

tity denoted by q. The eigenhmctions for different flow variables have been normal-

ized in such a way that maximum of E_,(Y; w, R_. ), the eigenfimction corresponding
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to the streamwise velocity fluctuation, is equal to unity. The factor F(J)(ar-s) is

the transfi)rm of the spatial distrilmti,m of the wall inhomogeneity, evaluated at

the complex wavenumber ct'v-s(w; R_.) of the instalfility wave. In contrast, the

flmction A(j ) depends upon the extermd-disturl)ance fl'equency, w, and location of

the wall-inhomogeneity, R6*, but is independent of th': local geometry. We refer to

it as the "efficiency fimction" for the particular confi) nation of wall-inhomogeneity

and fl'ee-stremn disturbmlce.

The product C_ j) relates the amplitude of the genre ated instability wave (at the

location corresponding to the origin) to the amplitu, e of the incident free-stream

disturbance. Hence, C_,j) may be reh'red to as the "local coupling coefficient".

Since we had remarked earlier about the similarity of the present method with

the asymptotic approach, it should not come as a surprise that the expression

(2.20b) for the coupling coefficient is identical in fornl to the asymptotic results of

Goldstein [2] and Choudhari[q. Equation (2.201)) edoes a generic result which is

valid for all types of linear localized receptivity mecl_anisms. Essentially, it states

that the effects of local geometry can be decoupled from the coupling coefficient

in a very simple manner. This enables one to compare different types of localized

mechanisms solely on the basis of their efficiency functions A (j}, irrespective of the

local geometry.

One shouhl note that the _alus"e of the COul)ling coefficient C (j), and hence the

efficiency flmction A (j), are inherently dependent upolL the physical quantity chosen

for measuring the instability wave amplitude. Howevel, having found the streamwise

velocity fluctuation produced by the generated T-S w,tve, the residue contributions

for other flow variables can be determined easily by u,-dng the T-S eigenfunetion for

this quantity. For instance, if one measures the prensure fluctuation at the wall,

p(J)* (Y -- 0), instead of the nmximum streamwise veh)city fluctuation, one canT-s
write,

piJ)* i _, (/(j) • • • (a.r_sX-_t)T-st" , Y = O, t) = p u,,<:U_ e (2.21a)

where

where the efficiency function A (j) is related to _ b."

(2.21b)

AI/) = Ev(Y = 0; _,,, Ra. ) ,:'_,,(j) (2.21c)

In the following section we present results illustrating the variation of the efficiency

functions AO)( 0, ) and R6. )with the freq.mncy parameter and location
of the wall inhomogeneity. In computing these results, we have used an approxi-

mation for the base unsteady solution _/'ov obtained l,y using just the leading order

term in (2.61)). Computations were also t)erformed usi :_g all three terms from (2.6b),
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and yielded visually indistinguishable results in all cases used fl:)r comparison. The

reasons for truncating the expansion for _/'uj, and its implications on the theoretical

accuracy of the present approach are discuss(,d in Section 4.

3. RESULTS

First consider the variation in the effMency fimctioi_s with tl,e frequency of the

external disturbance for a fixed location _f the wall inhonmgeneity. As pointed out

in the previous section, the efficiency fimction has a different value depending on

the physical quantity used to measure the amplitude of the generated instability

wave. To begin with, let us analyze tlte behaviour of A(j ), the complex valued

efficiency functions based upon the maximmn strcamwise velocity fluctuation. In

Figs. (3a-3c) and (4a-4c) we have plotted the magnitudes and arguments, respec-

tively of A!J),j 1 3, as functions of the frequency parameter f • ,. ,_Tr, 2

with the local Reynolds number R = _ as a parameter. For the self-similar

Blasius boundary layer, R is related to Ro., the Reynolds number based on the

local displacement thickness, via the simple relation R = Re./1.72. Note that the

local parameters w and R_, were used in Section 2 to fornmlate the problem since

the analysis presented herein is valid even for non-similar boundary layer profiles.

However, for the specific case of a Blasius boundary layer, it is more convenient

to present the results in terms of the parameters f and R. The symbols in Figs.

(3a-3c) correspond to results obtained using the present (O-S) approach, while

the lines represent single term asymptotic predictions based on Goldstein [21 and

Choudhari [51. Except in obvious cases or when stated explicitly, the same notation

will be followed in the remaining figures in this section which involve both symbols

and lines. The first part of this Section focuses only on the results obtained using

the O-S approach, while the latter part presents a detailed discussion regarding the

comparison of these two approaches.

Three different locations of the wall inhomogeneity have been considered in Figs.

(3a-3c). The location nearest to the leading edge corresponds to R = 350, and

probably represents the lower bound on the range of Reynolds numbers in which

the present approach can be expected to be valid. The next wall inhomogeneity

location corresponds to R = 700, while the l_cation farthest fl'om the leading edge is

assumed to be at R = 1050, i.e., in the range of Reynolds numbers where transition

is expected to set in on a flat plate without suction. In presence of wall suction, the

onset of transition may be delayed to nmch larger values of R. However, since the

T-S waves leading to transition are usually generated much farther upstremn of the

transition location, receptivity locations corresponding to R > 1050 are not likely

to be important in practice. For reference, the local growth ratc of the generated

T-S wave at each of these locations has been plotted in Fig. 5 as a function of the

frequency parmneter, f. In addition, the lower and upper branch frequencies at
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the three stations have been markcd on the horizontal axis ill Figs. 3a-3cby the
respectivesymbols, provided thesefrequenciesfall ill the range displayedin these
figures.

From Figs. (3a-3c),onecan observe two distinct trends in the behaviour of ]A9}(f)]

depending on the type of wall inhomog_'n_'ity. For the wall suction (j=l) and wall

admittance (j=2) cases, the value of f corresponding to the largest magnitude of

the efficiency function is less than one fom'th of the lower branch neutral frequency,

.ll.b., at both R = 700 and R = 1050. For larger frequencies, both IA_)l and IA (2)]

decrease naonotonically until f .._ f_.b., the fl'equency parameter corresponding to

the upper branch of the neutral stability curve. On the other hand, the magnitude

of A (a), the efficiency function in the wall hump case (j=3), increases monotonically

with / until reaching its maximum somewhere in the vicinity of f = f,,.b. (see also

Fig. 15b). The rate of increase in IA_a)] is fairly rapid in the range of subcritical

frequencies (f < fi.b.), but rather slow in the unstable range corresponding to ll.b. <

f < fu.b.. One may also observe that the peak w_lue of IA a)lis nearly independent of

the wall inhomogeneity location, being in the range 0.46-0.48 for all three locations

of the rougliness element. Subsequent to the point of its maxinmm, I was

found to decrease rapidly, being smaller than 0.1 for most flequencies larger than

fi,.b.. This behavior suggests that at any given location, the efficiency of receptivity

due to a wall hump is highest for frequencies which are locally unstable, Finally,

Figs. 4a-4c show that the arguments of the complex wflued efficiency functions

A_/_)(f), j = 1 - 3 change rather slowly in the frequency range of interest.

In Figs. 6a-6c, the nmgnitudes of A(pj}, the efficiency flmctions based upon the wall

pressure fluctuation produced by the T-S wave are plotted as functions of f for

the same locations of the wall inhonmgeneity as in Figs. 3a-3c. One may observe

from Fig. 6a that for small values of the fl'equency parameter, [A(/) I increases at a

nearly constant rate, in a manner similar to that of IA_])I in Fig. 3a. However, the

value of Ia ')l COntinues to increase unS,]i=t? rea.ches approxinlat(@ one-half of the

lower branch neutral fl'equency, ft.b.. On the other hand, the flmction IA ')l, which

exhibits a boundary layer type behaviour in the range .f << ft.b., has its maximum

near f < f_.b./4. Furthermore, Fig. 6a shows that IA_I}I remains virtually constant

foUowing the initial region of constant slope. This behaviouris markedly different

from that of IA ')l whichdecreases monotonically in the range of larger frequencies.

The behaviour of la 2>l,the magnitude of the efficiency function in the wall admit-

tance case, is quite similar to that of IAI))I corresponding to the wall suction case

discussed in the previous paragraph. The only qualitative difference between IA_I) I

and IA_=)I is that the latter displays a slight overshoot near f .._ ft.b./4, and subse-

quently, a small dip in the unstable range fl.bl < f < f,.b.- Therefore, the previous
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discusssion regarding the differences 1)etween IAI,')Iand IA ')I also holds in the case

of IA(p2)I and IAI_2)I. Finally, it is apparent from a comparison of Figs. 3c and 6c

that tile efficiency functi,,ns A_j) and A_/) possess diff,,rent trends even in the case

of receptivity due to a wall geometry variation (j=3). The function IA_S)(f)l does
(a)

not exhibit tile ph_teau behaviour disl)layed by lAb' (.f)l in tile range of unstable

frequencies, ft.b. < f < f,.b.. In fact, ]AI,3)(J') I has a nearly linear behaviour for all

frequencies of interest (i.e., f < .f,.b.). Thus, one may conclude that irrespective of

tile type of wall inhomogeneity, the frequency response of a given receptivity mech-

anism is quite different depending on the specific flow quantity used to quantify the

receptivity.

It was shown in Section 2 that the boundary value l_rol)leni governing the short-

scale' unsteady perturbation involves a different kind of inhoanogeneity depending

on the particular agency inducing the short-scale vari_, lion. For instance, the recep-

tivity due to a wall suction variation is entirely due t(, internal forcing representing

the interaction of the Stokes wave with the short-scale mean flow perturbation. In

contrast, the variation in the wall admittance leads 1o receptivity via only a forc-

ing at the boundary corresponding to the short-scal_, unsteady mass flux through

the porous surface. Finally, the boundary value pr(,blena for the receptivity due

to a wall hump contains an inhomogcncous term in both the governing differen-

tial equation as well as in one of wall 1)oundary conditions. As in the wall suction

case, the source term in the differential equation arises due to an interaction of the

Stokes wave with the mean flow perturbation, while The inhomogeneous boundary

condition represents the direct scattering of tile Stokes wave by the wall geometry

variation. Figures 7a and 71) illustrate the nature of the source term in the dif-

ferential equation governing the receptivity due to w_dl suction and wall geometry

variations, respectively. In both figures, we have pl,,tted the forcing function on

the right hand side of Eq. (2.13) as a function of the transverse coordinate Y. The

location of the receptivity region has been assumed _:o be fixed at R = 1050, and

results have been plotted for five different values of th,' frequency parameter f. One

may observe that for each frequency, the shape of the forcing function in Fig. 7a is

quite differellt from that in Fig. 71). The magnitude of the forcing function in the

wall suction case is maximum at tile wall and (tecre,_es rapidly away from it. On

the other hand, the forcing function in the case of receptivity due to wall rough-

ness has two lobes. The inner lobe is narrower, occupying less than one third of

the boundary layer displacement thickness for most frequencies within the unstable

range. The peak (-orresponding to the inner lobe also represents the maximum of

the forcing flmction across the entire boundary layer. The maximum corresponding

to the outer lobe is nearly one half of the maxinmm of the inner lobe. Figures 7a

and 7b also show that in general, the nlagnitude of the forcing function is signif-

icant only within distances less than one half of the boundary layer displacement
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thickness away fl'om the wall. Thus, it seems reasonable to conclude that the energy

transfer from the acoustic wave to the T-S wave is localized to the region close to

the surface.

In order to assess the effectiveness of the two types of inhomogeneous terms leading

to receptivity in the case of wall roughness, we have plotted their contributions sep-

arately in Fig. 8 along with the sum total. The dashed curve in Fig. 8 corresponds

to contribution to the efficiency flmction IAI;3)Idue to the inhomogeneous term in

the differential equation, while the dotted curve represents the contribution from

the inhomogeneous boundary condition. The roughness element is assumed to have

been fixed at a location corresponding to R = 2800 and the different contributions

to the efficiency flmction have been plotted as functions of f. Figure 8 suggests that

at all frequencies, the contribution due to the inhomogeneous boundary condition is

nmch larger than that due to the interaction of the Stokes wave with the mean flow

gradients. In fact, the latter contribution is nearly out of phase with the former at

all values of the fl'equency parameter. Therefore, the magnitude of the efficiency

function tA(.a)I is approximately equal to the difference of the magnitudes of contri-

butions from the two inhomogeneous terms. The asymptotic theory (Goldstein [21)

predicts that for f >> fl.t,., the mean flow perturbt_tion l)ecomes very small and

hence the total efficiency flmction can be well approximated by the contribution

due to the inhomogeneous boundary condition alone. However, Fig. 8 shows this

not to be the case.

Figures (9a-c) illustrate the variation in IA_])I,j = 1 - 3, for a fixed frequency dis-

turbance as the location of the wall inhomogeneity, R, is w_ried. For completeness,

the arguments of the complex valued A_ j) flmctions are plotted as fimetions of R

in Figs. 10a-10c. Results are plotted for foul: different fl'equency parmneters in the

range f = 20x10 -6 to f = 35x10 -6. This particular range was selected based

upon the corresponding values for the total amplification ratio (the N factor) of a

fixed fl'equency T-S wave between the two braxlches of the neutral stability curve.

As seen from Fig. (6.4) in Mack ['2_1, an amplification ratio of c9 is attained first by

a T-S wave with frequency corresponding approximately to f = 27x10 -6. The ap-

proximate N factors fin" the smallest and largest w_lues of the fl'equency parameter

in the range shown in Figs. 9a-9C are equal to 7 and 11, r_spectively. Hence, accord-

ing to the well-known c N criterion (see Smith and Gamberoni [2_1, Van Ingen [241, as

well as Bushnell and Malik [251) the frequencies in this range are likely to be most

import,'mt from the point of view of transition. For reference, the two neutral loca-

tions for each fl'equency parameter are indicated by arrows on the horizontal axes

in Figs. 9a-9c. The growth rate wu'iation with respect to the Reynolds number is

shown in Fig. 11.

Figure 9a shows that the efficiency of receptivity due to wall suction variation is

highest in the range of locations which are significantly upstream of the lower branch
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of the neutral stability cu,'ve. Tile maximum value of ]:\(,itI occurswhen the region
of wall suction variation is located app,'oximately two-thirds of the distance from
the leading edgeto the neutral location. At fa_,'the,"downst,'eamlocations, IA(.')I
decreases, but only to ,'each a plateau close to the. location where the streamwise

growth ,'ate of the T-S wave is at its ,naximnm. The value of IA(.')I remains roughly

constant between the locations correspolMing to the maximum growth rate and the

upper branch of the neutral stability curve. Shortly after the wave begins to decay

again, IA(.')I drops rapidly to very small values. As rema,'ked before, the behaviour

of the ]A(,/) I curve beyond the location co,'responding to the upper branch is of

little practical interest. Figure 9b shows that similar to the wall suction case, the

local efficiency of receptivity due to a wall admittance variation is highest when the

variation occurs close to the leading edge. Of course, one must realize that the higher

levels of efficiency close to the leading edge are offset by the larger magnitudes of the

decay factors corresponding to the exponential decrease in the T-S wave amplitude

upstream of the lower b,'anch neutral location. One may further observe that IA(,,e)I
decreases rapidly as the region of wall admittance variation moves away from the

leading edge. However, the rapid decrease is halted when the wall inhomogeneity

moves to locations within the unstable region. In fac_, the value of IA(.2)Iincreases

slightly for locations close to the upper branch.

The behaviour of IAli')l showu in Fig. 9(. as a fimction of the wall inhonaogeneoity

location is quite similar to that in Fig 3c, where ,v_s plotted as a function of

the frequency parameter with the wall inhomogencity fixed at a particular location.

Thus, IA(.a)I increases rapidly until reaching the lower branch neut,'al location, but

the increase is quite slow within the range of unstal)le locations. After crossing the
.(3)

upper branch location, A,; again decreases rapidly to very small values. Note that

the crude resemblance between the two setsof figures,3a-3c and 9a-9c, could have

been anticipated based ()n the qualltativcequivalence betwcen increasing down-

strcam distance for a fixed physical frequency and increasingl)hysica]frequency at

a fixedlocation.In fact,in thc infiniteReynolds nmnber limit,thisequivalence can

bc quantified in terms of a similarityi)aranmtcr R:'/'2Fin the vicinityof branch I

of the ncut,'alstabilitycurvc.

The present analysis was bas(_d on the assmnl)ti(m that the local instability wave-

length is much shorter than the length scale over which the mean boundary layer

properties change significantly, i.e., the distance of the wall inhomogeneity from

the leading edge. This a ssuxnption enabh's one to neglect the variation of the base

flow over the length of the receptivity ,'egion. The validity of this approximation

can be verified a posteriori from the results in Figs. 9a-9c. Essentially, the "local"

approximation is valid if the efficiency flmction does not vary significantly over an

instability wavelength. Figures 9a-9c show that the only region within the entire

domain of interest where the efficiency flmctions, [A(.j)l, J = 1 - 3, have a large gra-
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dient corresponds to locations close to the leading edge. For instance, at a location

corresponding to R = 500, the variation in ]AI,2)I over an instability wavelength is

O(10%) for f = 30e: - 6. Consequently, th,' receptivity predictions in the vicinity

of this point can be assumed to bc accurate only within a comparable bound for

error.

In the remaining part of this paper, we compare the results obtained using the

present approach with predictions based on the asymptotic (triple deck) framework

used by previous investigators. As remarked before, the coupling coefficient in both

cases can be expressed as a product of the geometry and (:fficicncy functions, fi'(J)

and A (j), respectively. This allows us to comlmre the results of the two approaches

by comparing separately their respective predictions of b_(j) and A_ j). For a speci-

fied spatial destribu(ion of the wall inhomogenelty, the geometry factor fi'(J)(aT.S.)

depends only upon the instability wavenumber a'T.s, which is determined by an

eigenvalue calculation. We already presented results for the imaginary part of aT.S.

in Fig. 5. This quantity is usually much smaller than the real part of aT.S.. How-

ever, it may have a significant impact on the value of F(J) for certain types of

geometries. Figure 5 shows that even though the triple deck expansions are valid

only in the vicinity of the lower branch of the neutral stability curve, the asymptotic

predictions for the streamwise growth rate, Im¢Ig(C_T.S.), exhibit correct trends in

most parts of the unstable region. Of course, since only a leading order solution

was used to compute the asymptotic results, there are significant quantitative errors

in comparison to the O-S results. For example, the asymptotic estimates for the

maximum growth rate are consistently larger than the values predicted using the

O-S equation. In Fig. 12 we show a comparison of the real parts of the instability

wavenumber C_T-S calculated from the two methods. In contrast to the predictions

for the imaginary part of _7"-s, one finds that the asymptotic theory always un-

derestimates the value of Real(aT-S). The differences in Real(a'T-S) may not be

crucial for snmoth geometries such that the geometry function _'(J}(o ) x-aries slowly

enough with a. However, for shapes such as a rectangular hump, where lg'(J)(a)

oscillates on the scale of the hump length, the a.symptotic predictions may have a

significant error. The errors in the asymptotic 1)redictions for both Real(aT-s) and

Imag(c,T-S) become smaller for larger values of the Reynolds number, especially

in the vicinity of fl.I,. (Figs. laa,13b). However, the extent of this improvement is

quite margin,'d even for R as large as 2800.

Choudhari [5] utilized the triple deck theory to examine the influence of the width

of a suction strip on the receptivity due to the interaction of a free-stream acoustic

wave with the mean flow disturbance induced by a uniform suction applied through

the strip. As discussed above, the local geometry enters only through the factor _(1)

which is simply the Fourier coefficient of the wall suclion distribution corresponding

to the T-S wavenumber, aT-s, at the specified acoustic frequency, aa. Choudhari [51
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presenteda graph illustrating the variation in p(1) with respect to the width of
the suction strip for four different locations of the strip. The geometry function
_,(l) wasevaluatedusing the asymptotic valueof aT-S. However, since the results

were plotted with the suction-strip width normalized by the local T-S wavelength

(i.e., as 2_rw_t,.ip/Rcal(o_T-S)), the same plot can also be utilized in the context

of the present finite Reynolds number approach by using the value of Real(aT-S)

obtained fl'om the O-S eigenvalue problem. The inferences drawn in this manner

will be exact for the case of a wall inhomogeneity located at one of the neutral

stations, but only qualitatively true for other locations for which Imog(crT_S) is

nonzero.

In addition to the instability wavenumber ta',i'-s, it is useful to compare the finite

Reynolds number and asymptotic predictions for Ep(Y = 0) which also depends

only upon the solution to the eigenvalue problem. This quantity represents the

ratio of the wall pressure fluctuation and the maxinmm streamwise velocity fluc-

tuation associated with the T-S wave, and relates the the two efficiency functions

A_ j) and A_j) as shown in (2.23c). Note that in the asymptotic theory, one has to

deal with separate expansions in three different regions in the transverse direction,

and the maximum of the streamwise velocity fluctuation can only be determined

by forming a composite expansion which is unifornfly valid in all three regions. For

convenience, the predictions in Goldstein['-'] and Choudhari ['51 utilized an approx-

imate value for this quantity bas¢'d upon the maximum across the main part of

tl_e boundary layer, i.e., across the middle deck of the asymptotic expansion. The

same approximation has also been used in the asymptotic results used in this pa-

per. The fact that the maxinmm of the strcamwise velocity eigenflmction across

the lower deck is slightly larger than this approximate value, especially for fre-

quencies much larger than the lower branch neutral fl'equency wouhl indicate that

the magnitude of Ep(Y = 0) based on a composite asymptotic expansion will be

somewhat snmller than the approximat,_ result displayed here. In Fig. 14 we have

plotted [Ep(Y = 0)1 as a function of .f, with the wall inhomogeneity location as a

parameter. One may observe that the agreement between the asymptotic and O-S

results is quite satisfactory for .f < ft.b.. However, for frequencies corresponding to

f > fi.b., the asymptotic predictions for Et,(]" = 0) are somewhat snmller than the

values obtained from the O-S equation. Recomputing the asymptotic result using

the maximum strcamwise velocity fluctuation across the lower deck led to reduced

differences with the O-S predictions in the range f > ft.b.. However, since the cor-

rect approach involves using the somewhat cmnl)crsomc composite expansion across

all decks, all a.symptotic predictions used in this paper are based on the maximum

across the main deck.

}Ve now return to the Figs. 3a-3c as well as Figs. 4a-4c, and compare the values

of the efficiency fucntions AI j) obtained from the asymptotic and finite Reynolds



22

number approaches. Figure 3a shows that for the j = i case, i.e., for receptivity

due to a wall suction variation, the agreement between the two approaches is quite

good for frequencies close to fl.b., the frequency corresponding to the lower branch

of the neutral stability curve. The agreement is not equally satisfactory in regions

away from f = ft.b., but can still be considered reasonable. Figure 15a shows

that a better overall comparison is possible at larger Reynolds numbers. On the

other hand, it can be seen from Fig. 31) that in the case of receptivity due to

a wall admittance variation, i.e., j = 2, the asymptotic predictions for ]A_/) I are

in excellent agreement with the finite Reynohls number rrsults even at Reynolds

numbers as low as 350. The only range of frequencies where the two predictions

differ significantly corresponds to f << ]).b.- Figure 3c shows that for j = 3,

viz., receptivity duc to a roughness element on the wall, the magnitudes of the

A(_ ) function calculated using the two approaches match well at small frequencies,

f _< ft.b.; however, as seen from Fig. 4c, the arguments of A_3) differ significantly.

On the other hand, as f becomes larger than ft.b.: the two predictions for the

magnitude of A(u3) begin to deviate from each other, but the agreement in the phase

of A_a) improves substantially. The average difference in the magnitude predictions

is of the order of 15-20 percent for ll.b. < f < fu.b. Figure 15b shows that this

difference persists at larger values of the Reynolds lmmber. One may remark at

this point that the asymptotic predictions of Goldst,'in [2] matched quite well with

Aizin and Polykov's [2_1 experimental findings rel_tted to the receptivity due to the

interaction of a free-stream acoustic wave with a hump on the wall. However, the

overall asymptotic predictions were somewhat on the lower side of the range of T-S

wave amplitudes measured in the experiments.

The above tr_.nds in the comparison of thr asymptotic and finite Reynolds number

approaches would suggest that predictions from the latter approach would match the

experimental results even better. Finally, if one compares the efficiency functions

based on the pressure fluctuation at the wall (Fig. 6c), an excellent agreement is

found at all frequencies as well as Reynolds nmnbers. The differing comparison for

the two types of efficiency functions, AIj) and A_ j), can easily be explained on the

basis of the comparison of Ep(Y = 0) discussed previously in the context of Fig.

14.

The asymptotic theory has the advantage that it furnishes analytical solutions,

thus enabling exhaustive parametricstudies to be conducted without nmch cost.

Therefore, in the absence of detailed numerical rcsults, approximate results can

be obtained by using the asymptotic predictions. The comparison between the

two approaches in the preceding paragraphs showed that the triple deck theory

predicts the overall trcnds correctly in most of the par_uneter space. However,

there are significant quantitative errors in the asymptotic predictions related to

the neutral curve as well as streamwisc growth rates of the T-S waves. This may
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affect tile values of the geometry factor to a considerableextent. On the other
hand, the asymptotic results related to the efficiency functions were found to be
relatively more accurate. Therefore, as a first cut measure, the accuracy of the

asymptotic predictions can be improv,'d by calculating the geometry factor using

an O-S result for the instability wavenumber. To investigate if the accuracy of the

efficiency functions can be further improved by using a little additional information

from a numerical data base obtained with a finite Reynolds number approach, the

results fi'om Fig. 3c for R = 700 and R = 1050 are replotted in Fig. 16 after

normalizing both the ordinate, ]A_,a)l, and the abscissa, .f, by their respective values

at the lower branch of the neutral stability curve. It is obvious that the significant

discrepancies in Fig. 3c at larger frequencies have now disappeared, yielding an

excellent agreement between the two approaches at all frequencies as well as wall

inhomogeneity locations. This suggests a way of profitably utilizing any available

asymptotic input without sacrificing the accuracy to any great extent. This type of

correlation, if applicable, will be especially valuable for boundary layer flows more

complex than the Blasius boundary layer, since the asymptotic theory may be less

accurate in such cases.

4. APPLICATION TO RECEPTIVITY IN DISTRIBUTED REGIONS

OF SHORT-SCALE VARIATIONS

The discussion in the previous sections was limited to receptivity occuring in local-

ized regions of wall inhomogeneities. However, the results obtained therein can also

be extended to receptivity occuring in distributed regions of short scale variations.

The solution for the localized case can be utilized as part of a slowly varying Green's

function for the problem of distributed receptivity in a manner similar to Tam [21]

who used this idea earlier in a related context, According to the stability theory

for weakly non-parallel shear flows, the uniformly valid solution for the streamwise

velocity fluctuation sufficiently far downstream of a point source at X = X, is given

by

G.(X,Y;f[X_) = Ao(x_)A(x; x_)E,,(}': .r; f)e i[e(x)-e)(x')-_''], (4.1)

where the streamwise origin of the coordinate system has been fixed at some arbi-

trary point sufficiently far downstream of the leading edge. The initial amplitude,

A0(x_), in (4.1) is provided by the solution to the local problem at X=0 (i.e., the

local coupling coefficient), with the geometry factor ['(Jl(ar.s.) set equal to unity

corresponding to a point source excitation. The amplitude and phase functions,

A(x; x_) and O(X) are obtained from the weakly nomparallel stability analysis.
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Sununing over the contributions from the entire sourceregion, one would obtain,

X

ur-s= / G.(X,Y;flX_)F(X_)dX_, (4.2)

where the fimction F(X_) now denotes tile strenmwise distribution of the forcing

flmction in the equations describing the O(ei, e(,J,_) p,'rturbation. For instance, in

the wall admittance problem, it corresponds to the specified distribution of the

unsteady vertical velocity. Thus given the streamwise distribution of the forcing

fimction, the integral in Eq. (4.2) can be evaluated to determine the instability

amplitude at any given station.

By differentiating with respect to the streamwise varial)h', Eq. (4.2) can also be

converted to a wave amplitude equation similar to that obtained by Tam [all,

OU T- S O0

OX - i -_-_u'r-s + F G_ + O(e_). (4.3)

Equation (4.3) shows that when the receptivity occurs continuously over a large

number of instability wavelengths, the local change in the amplitude of the T-S

wave is due to transfer of energy from the mean flow (in other words, the exponen-

tial growth or decay of instability waves generated ups_ ream of the present location)

as well as due to local input from the external disturbances. As pointed out by Tam,

the relative contributions from the two types of inputs depend upon the local am-

plitude of the instability wave. Large values of the instability wave amplitude would

imply that the contribution due to tlm external input is much weaker compared to

the local amplification rate due to transfer of energy from the mean flow via the

Reynolds stress distribution. Therefore, for locations close to the upper branch of

the neutral stability curve, the amplitude distribution curve asymptotes to that of

a pure T-S wave eigensoluion.

One may also remark in passing that for a spatially periodic forcing such as that

induced by wall-waviness, or suction strips with mfiform spacing, the contributions

from neighbouring locations to the integral in (4.2) would tend to cancel each other.

Therefore, the Green's function integral will be dominated by contributions from a

small rmlge of locations in the vicinity of the point where the integrand is nearly

stationary. At this location, the instability phase O is maximally synchronized

(or "tuned") with the phase of the external forcing F thus leading to a minimal

cancellation in the surrounding region. In other words, the instability wave and the

forcing function are closest to being in resonance in this region.
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5. CONCLUDING REMARKS

An alternative to tile tril)le deck al)proach was present,,d fol the prediction of recep-

tivity due to the interaction of a flee-stream acoustic wave "vlth localized regions of

short-scale variations in surface b,_un(lary conditions. The receptivity problem re-

duces to an inhomogeneous Orr-Sommerfel(1 problem ill the Fourier transform space,

and the amplitude of the generated instability wave ca1 be determined as the residue

corresponding to the T-S wavenumbcr. This approach is non-asymptotic, but it has

the advantage of being relatively more accurate at lower Reynolds numbers. The

leading order error term is estimated t() be O(R-_. 3/4 log R_. ) or O(R-_. 3/5 log R_. )

depending on whether the acoustic frequency scales o1_ the frequency corresponding

to the lower or upper branch of the neutrM st_d)ility curve. Thus, at finite Reynolds

numbers, the accuracy of this approach is limited only du(_ to the "localness" ap-

proximation and freezing the profile of the undisturbed mean flow over this local

region.

The above estimate for the error has been obtMned on the assumption that one has

used the filll three term asymptotic expansion in (2.6b) to obtain the unsteady base

flow solution, ¢0v. Replacing g'0v by its leading order beh,tviour corresponding to

the Stokes shear wave increases the theoretical estimate f,_r the error to O(x-_ 1).

For sufficiently large Reynolds numbers, this error is of O(R_//4) for f close to ft.b.,

which is comparable to the error in the single term triple d('ck expansion. However,

the error in the finite Reynolds number approach becomes nmch smaller in the main

part of the unstable region, since x_-_ is of O(R-S/5) there. Moreover, we compared

the efficiency functions based on the Stokes wave approximation for g'0p with those

obtained using the complete three term asymptotic ('xpal sion in (2.6a,b) for the

case of a wall inhomogeneity located at R = 1050, and th[ two results were found

to be visually indistinguishable on the scale of Figs. 3a,c.

Since the T-S wave amplitude is determined numerit'ally, using three terms from

(2.6b) is no more difficult than just the Stokes way,' soh_tion. However, a solu-

tion such as (2.6b) may not always be available, esp,'cially in more realistic flows

corresponding to non-similar base mean flows. In f_ct, the only available infor-

mation about the acoustic disturbance may consist (,f the local fluctuation in the

free-stream velocity. Since the region of receptivity h_,s been assumed to be a large

numl)er of convective wavelengths downstream of the leadilLg edge, it seems reason-

able to compute ¢0_, by assuming the airfoil surface to be locally fiat and infinite

in both directions. Then ¢0p satisfies the O-S equation .;ubject to the specified

slip velocity in the free-stream. For incompressible flows the Stokes shear wave

corresponds to the zero wavenumber (i.e., acoustic) solutioiL to the O-S equation.To

maintain a consistent way of approximating t/'ol, in all type_ of boundary layers, we

have used the Stokes wave approximation even in the case (,f the self-similar Blasius

boundary layer.
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Ill addition to predicting the generation of the, viscous T-S wav¢'s, the finite Reynolds

number approach can be utilized to predict the coupling coetIicients for the case

of predominantly inviscid type instabilities in all adverse pressure gradient bound-

ary layer where the triple deck framework is not applicable. In fact, with minor

modifications, the present approach can be extended to such complex flows as three-

dimensional and high-speed boundary layers. These flows are susceptible to various

types of instability waves, each with its own asymptotic structure. In order to

compare the effectiveness of a wall inhomogeneity in exciting the different types of

instability waves, it becomes necessary to have a general approach which will be

valid for as many ¢ff these instabilities as possible. It is for this class of problems that

the strength of the approach presented in this paper really becomes apparent. Some

preliminary results on the receptivity in high-speed and three-dimensional bound-

ary layers using this approach have been presented by the present authors in Ref.

[10]. Finally, the comparison of the present results with the asymptotic predictions

suggests that in unsteady problems governed by the triple deck framework, quite

satisfactory results can be obtained by using only a single term in the asymptotic

expansion. In addition, such a comparison can also suggest ways of utilizing the

asymptotic results wittl better accuracy, especially in more complicated problems

such as those outlined above.
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Fig. 3 Magnitudes of the efficiency functions A_),j = i - 3 from Eq. (2.20b) as
functions of the non-dimensional frequency parameter f = w*v_/rY_ _, with

the location of the wall inhomogeneity (R - _ = R6-/1.72) as a

parameter. The symbols denote the results from the finite Reynolds number
approach, while the lines correspond to asymptotic predictions.
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Fig. 4 Phase of the complex valued efficiency functions A_ ), j = 1 - 3 from Eq.

(2.20b) as functions of the non-dimensional frequency parameter f = w* u_ /U_ 2,

with the location of the wall inhomogeneity (R - _/e/_-_Yt- = R6./1.72) as a

paxaxneter. The symbols denote the results from the finite Reynolds number
approach, while the lines correspond to asymptotic p_edictions.
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Fig. 9 Magnitudes of the efficiency functions A_),2 = 1 - 3 from Eq. (2.20b) as

functions of the wall inhomogeneity location (R -= _ = R6-/1.72) with

f = w*v_/U_ 2 as a parameter.
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Fig. 10 Phase of the complex valued efficiency functions A_),j = 1 - 3 from Eq.

(2.20b) as functions of the wall inhomogeneity location (R _ _ =

R6-/1.72) with f ...... 2= w Vo_lU _ as a parameter.
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